日韩精品极品视频在线观看免费,天天夜碰日日摸日日澡性色AV,精品国产福利在线观看网址,亚洲第一区欧美国产综合

基于模型預(yù)測(cè)控制的自航耙吸挖泥船.doc

約77頁(yè)DOC格式手機(jī)打開(kāi)展開(kāi)

基于模型預(yù)測(cè)控制的自航耙吸挖泥船,摘要隨著科技的不斷進(jìn)步,我國(guó)疏浚作業(yè)能力已取得長(zhǎng)足發(fā)展,疏浚設(shè)備也隨之得到更新。我國(guó)疏浚設(shè)備朝著大型化和自動(dòng)化方面發(fā)展,但是對(duì)疏浚高效化方面還缺少研究,在現(xiàn)有的疏浚設(shè)備基礎(chǔ)上提高疏浚性能、提升疏浚效率是我國(guó)疏浚事業(yè)亟待研究和發(fā)展的方向?;诖碎_(kāi)展耙吸挖泥船疏浚機(jī)理研究,探討疏浚優(yōu)化工況方法,對(duì)提高挖泥船疏浚效率具有重大...
編號(hào):20-209490大小:2.63M
分類(lèi): 論文>通信/電子論文

內(nèi)容介紹

此文檔由會(huì)員 違規(guī)屏蔽12 發(fā)布

摘 要
隨著科技的不斷進(jìn)步,我國(guó)疏浚作業(yè)能力已取得長(zhǎng)足發(fā)展,疏浚設(shè)備也隨之得到更新。我國(guó)疏浚設(shè)備朝著大型化和自動(dòng)化方面發(fā)展,但是對(duì)疏浚高效化方面還缺少研究,在現(xiàn)有的疏浚設(shè)備基礎(chǔ)上提高疏浚性能、提升疏浚效率是我國(guó)疏浚事業(yè)亟待研究和發(fā)展的方向。基于此開(kāi)展耙吸挖泥船疏浚機(jī)理研究,探討疏浚優(yōu)化工況方法,對(duì)提高挖泥船疏浚效率具有重大意義。
本課題從耙吸挖泥船疏浚機(jī)理出發(fā),建立基于控制的耙吸挖泥船數(shù)學(xué)模型,通過(guò)對(duì)疏浚過(guò)程和生產(chǎn)效率的智能評(píng)估與分析,采用模型預(yù)測(cè)控制(MPC)技術(shù),獲取疏浚優(yōu)化的最佳策略,實(shí)現(xiàn)在不同土質(zhì)和不同疏浚裝備工況條件下的優(yōu)化控制。
首先在考慮土壤等因素的影響條件下,論文建立基于控制的耙吸挖泥船挖掘裝艙過(guò)程的數(shù)學(xué)模型,對(duì)耙頭挖掘過(guò)程和泥艙沉積過(guò)程進(jìn)行了機(jī)理分析與數(shù)學(xué)建模,并采用挖泥船實(shí)測(cè)數(shù)據(jù)對(duì)模型進(jìn)行驗(yàn)證。驗(yàn)證結(jié)果表明模型具有很高的準(zhǔn)確性,可用于MPC控制設(shè)計(jì)。
其次在系統(tǒng)分析和研究挖泥船疏浚過(guò)程的基礎(chǔ)上,提出一種基于模型預(yù)測(cè)控制的在線疏浚優(yōu)化的方法,優(yōu)化的目的是使挖泥船在完整疏浚周期內(nèi)的產(chǎn)量最大化。MPC控制器由數(shù)學(xué)模型、目標(biāo)函數(shù)和優(yōu)化器三個(gè)部分構(gòu)成。
疏浚優(yōu)化過(guò)程是一個(gè)復(fù)雜的多系統(tǒng)耦合,多約束條件問(wèn)題。本文將遺傳算法運(yùn)用于MPC控制器的優(yōu)化器,使優(yōu)化器能在大搜索空間中以相對(duì)較少的時(shí)間達(dá)到最優(yōu)值,尋找到最佳的可控疏浚參數(shù)。然后采用“新海鳳”號(hào)自航耙吸式挖泥船工程實(shí)測(cè)數(shù)據(jù)對(duì)該MPC控制器及其優(yōu)化算法進(jìn)行了仿真驗(yàn)證,并與現(xiàn)有控制技術(shù)進(jìn)行性能比較,結(jié)果表明MPC優(yōu)化方法能夠使挖泥船的疏浚周期縮短10%~18%,周期產(chǎn)能提高10%。
最后采用LabVIEW開(kāi)發(fā)了基于MPC的疏浚優(yōu)化控制系統(tǒng)人機(jī)界面。系統(tǒng)根據(jù)周期產(chǎn)量和時(shí)間效率對(duì)疏浚性能進(jìn)行評(píng)估,給出歷史最優(yōu)疏浚周期以及與疏浚工況條件相適應(yīng)的最優(yōu)可控參數(shù),以達(dá)到疏浚產(chǎn)量最大化,提高挖泥船的疏浚效率和性能。


關(guān)鍵字:自航耙吸挖泥船;模型預(yù)測(cè)控制;疏浚優(yōu)化;遺傳算法;性能評(píng)估












































Abstract
With the rapid development of science and technology, our dredging cause has made great progress and dredging equipment has also got updated. Great progress has made in dredging equipment in the aspect of its large scale and automation, while the high efficiency of dredging is still lack of study. On the basis of dredging equipments, the improvement of dredging performance and elevating dredging efficiency are the aspects what our dredging cause should be researched and developed. Research on the mechanism of trailing suction hopper dredger dredging and search of the optimal ways will mean to the improvement of the dredger’s efficiency of construction and the market competitiveness.
On the foot of the mechanism of trailing suction hopper dredger dredging, a control-based trailing suction hopper dredger dredging mathematics model was researched and built, and intelligent analysis and eva luation was made to dredging process and production efficiency. Model-based predicative control strategy (MPC) was adopted to obtain the best strategy for dredging optimization and to achieve dredging optimization control under different soil conditions and different dredging equipment.
Firstly, taking the soil and other factors into account, the thesis presents a mathematics model of hopper process. Besides, the thesis models and simulates drag-head and hopper and verifies these models by real measured data. The result indicates the model is of high accuracy and can be used in MPC control design.
Secondly, on the basis of system analysis and study of dredgers’ dredging process, an online dredging optimization method developed by model predictive control was brought up. The purpose of optimization is to maximize the dredgers’ production within a complete dredging cycle. MPC controller consists of three parts: mathematics model, target function and optimizer.
Dredging optimization process is a complex, multi-system coupling and a multi-constraint conditions problem. Genetic Algorithm was adapted to MPC controllers’ optimizer in the thesis. Then the optimized values, the best controllable dredging parameters can be found by optimizer in a large search room and within less time. The optimization algorithm and MPC controller were stimulated and validated, using the project data measured on “Xinhai feng” trailing suction hopper dredger, and performance contrast with updated control technology. The result shows that MPC optimization shortens the dredging time of 10% --18%, and increases dredging efficiency of 10%.

Lastly, man-machine interface is developed based on LabVIEW Software. According to cycle production and time efficiency, dredging performance was eva luated by system. Then the optimal dredging cycle and the best controllable parameters suitable to dredging conditions were given in record to maximize the high dredging production and to improve the dredging efficiency and its performance.

Key words: Trailing Suction Hopper Dredger; Model Predictive Control; Dredging Optimization; Genetic Algorithm; Performance Assessment















-b..